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1 Introduction

The idea that words and documents can be usefully expressed as numerical objects is at the core

of much modern political methodology. The exact method one uses to model “text as data” has

been debated. But in recent times, so called “word embeddings” have exploded in popularity

both inside and outside our discipline. The premise of these techniques is beguilingly simple: a

token of interest (‘welfare’ or ‘washington’ or ‘fear’) is represented as a dense, real-valued

vector of numbers. The length of this vector corresponds to the nature and complexity of the

multidimensional space in which we are seeking to ‘embed’ the word. And the promise of these

techniques is also simple: distances between such vectors are informative about the semantic simi-

larity of the underlying concepts they connote for the corpus on which they were built. Applications

abound. Prosaically, they may be helpful for a ‘downstream’ modeling task: if consumers search

for ‘umbrellas’, they may also want to purchase ‘raincoats’, though not ‘picnic’ equipment.

Or the similarities may be substantively informative per se: if the distance between ‘immigrants’

and ‘hardworking’ is smaller for liberals than for conservatives, we learn something about their

relative worldviews.

Exploiting the basic principles behind these examples, word embeddings have seen tremendous

success as feature representations in well-known natural language processing problems. These

include parts-of-speech tagging, named-entity-recognition, sentiment analysis and document re-

trieval. Given the generality of those tasks, it is unsurprising that word embeddings are rapidly

making their way into the social sciences, political science being no exception. But as is often

the case with the transfer of a technology, there is a danger that adoption will outpace understand-

ing. Specifically, we mean comprehension of how well the technology performs—technically and

substantively—on specific problems of interest in the domain area of concern. The goal of this pa-

per is to provide that understanding for political science, enabling practitioners to make informed

choices when using these approaches.

This broad aim stated, we now clarify our particular focus. As conveyed in our examples

above, word embeddings serve two purposes. First they have a ‘mere’ instrumental function, as
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feature representations for some other learning task. So, crudely, while we care that advertising

‘raincoats’ to those interested in an ‘umbrella’ improves the user experience, we don’t much

care why this is. That is, we don’t have a deep linguistic interest in these terms, or what their

nearness tell us about society or its development. Second then, embeddings are a direct object

of interest for studying word usage and meaning—i.e. human semantics. Good performance in

the former need not, indeed often does not, correlate with good performance in the latter (Chiu,

Korhonen and Pyysalo, 2016).

In this paper we focus on this second purpose: embeddings as measures of meaning. The

reasoning is simple. First, we cannot pretend to foresee all the downstream use cases to which

political scientists will apply embeddings. Moreover, given a well-defined downstream task, how

to think about performance is trivial—these are usually supervised tasks with attendance metrics

measuring accuracy, precision and recall. Second, word usage, including differences between

groups and changes over time, is of direct and profound interest to political scientists. There are,

however, no well-defined validation metrics beyond those used in the computer science literature

which need not apply well to political science and indeed have important limitations (Faruqui et al.,

2016).

With this in mind, our specific contribution goes beyond (what we consider) a useful series of

results. We propose the framework used to generate them, that will guide researchers through the

maze of choices that accompany word embeddings. These include whether to use cheap pre-trained

or (more) expensive ‘local’ corpus trained embeddings. And, within models, we demonstrate the

effects of altering core parameters such as context window size and embedding vector length. In

addition to standard predictive performance and computational cost metrics though, we present two

novel approaches to model comparison and validation. First, framing the task as an information

retrieval one, we show how models may be mechanically compared in terms the words they place

close to others—including politics-specific tokens. As a second “gold-standard” approach, we

propose a new take on the classical “Turing test” wherein human judges must choose between

computer generated nearest neighbors are compared to human generated nearest neighbors. While
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we necessarily make certain choices in terms of embedding architecture and which parameters to

focus on, we stress the framework herein developed is completely general and not beholden to

these choices. It is easily adaptable to evaluate new models—including non-embedding models of

human semantics—and other parameter variations.

Our findings are ultimately reassuring for practitioners. In particular, (cheap, readily available)

pre-trained embeddings perform extremely well on a multitude of metrics relative to human coding

and (expensive) locally trained models for political science problems. This is true beyond our focus

Congressional Record corpus, and extends even to non-English collections.

We will discuss the choices practitioners faces momentarily. Before doing that, we provide a

brief overview of the embeddings literature to clarify terms for what follows.

2 Word Embeddings in Context

The methods to implement word embeddings in a scalable way are new. The central theoretical

concepts are not. Indeed, modern incarnations of these models find common ground in the dis-

tributional semantics literature dating back to at least the 1950s (e.g. Wittgenstein, 1953; Harris,

1954; Firth, 1957). They now go by various names: semantic vector space models, word space

models or—our preferred nomenclature—distributional semantic models (DSMs).

2.1 Local Windows: The Distributional Hypothesis

The key insight of the early theoretical work was that we can “know a word by the company it

keeps” (Firth, 1957, 11). More concretely, a word’s meaning can be garnered from its contextual

information: literally, the other words that appear near it in text. Formalizing this idea, the “dis-

tributional hypothesis” suggests that words which appear in similar contexts are likely to share

similar meanings (Harris, 1970). A “context” here would typically mean a symmetric window of

terms around the word of interest.

Confusingly, techniques that use local windows are sometimes written of as if they are syn-
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onymous with DSMs. But this is wrong. In particular, when DSMs for large corpora took off

empirically in the 1990s, the distributional insight was applied in very different ways. Notable

efforts include Latent Semantic Analysis (Landauer and Dumais, 1997), Hyperspace Analogue to

Language (HAL) (Lund and Burgess, 1996) and Latent Dirichlet Allocation (LDA) (Blei, Ng and

Jordan, 2003). Of these, LDA and its variants (e.g. Quinn et al., 2010; Roberts et al., 2014) have

proved extremely popular in social science but the implementations of this technique do not require

(nor typically recommend) local windows of text within documents.

2.2 Embeddings: Neural Models

While the logic of local windows is straightforward to describe, systematic modeling of word

sequences is extremely challenging. The key innovation, provided by Bengio et al. (2003), was

conceiving of words as distributed representations within a neural language model. Here ‘neural’

means based on a (artificial) neural network, a very flexible framework for learning relationships

that has appeared in some political science contexts (e.g. Beck, King and Zeng, 2000). The Bengio

et al. approach maps words to real-valued vectors. Intuitively, each element of those vectors

represents some hypothetical characteristic of the word(s). The vector for a given word can be

called a word embedding.

These vectors are obviously conceptually and practically different to those of the ‘vector space

model’ well-known to political scientists. For one thing, word embedding vectors are, per their

name, for words. The vector space model has each document as a vector. In addition, the embed-

ding vectors are the result of applying a model, whereas the document vectors are the input to one.

Building on Bengio et al. (2003), and key for our interests, Collobert and Weston (2008) (see also

Collobert et al., 2011) demonstrated that while word embeddings are useful for downstream tasks,

they also carry substantive syntactic and semantic information about language per se. Again this

is a conceptual shift from the traditional vector space modeling in political science. There, words

are discrete symbols. Their meaning is exogenous to the endeavor at hand, and we simply count

(in various ways) their occurrence. In the embeddings literature, the meaning of words is itself a
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quantity that can be learned; furthermore their vector representations often allows for simple but

informative mathematical operations. A textbook case is to note that (certain) embeddings can

produce analogies like king - man + woman ≈ queen, where each term is represented as vector in

D dimensional space. But there was a second advancement in this work: the authors alleviated a

methodological problem that made earlier estimation (by e.g. Bengio et al., 2003) very slow.

2.3 The rise and rise Word2Vec and GloVe

Mikolov et al. (2013) took the logic of the Bengio et al. (2003) model, but focused solely on

producing accurate word representations. These authors reduced the complexity of the model,

and allowed for its scaling to huge corpora and vocabularies. Released as a set of models called

Word2Vec, this work is so popular that it has confusingly become almost synonymous with both

embeddings and DSM. Beyond modeling improvements, Word2Vec included several preprocess-

ing steps that are key to its performance. Soon after its release, Pennington, Socher and Manning

(2014) proposed a competing algorithm—Global Vectors, or GloVe—that showed improved per-

formance over Word2Vec in a number of tasks. Despite having different building blocks (Word2Vec

is based on a shallow neural net, GloVe is based on co-occurrences), the two approaches are not

mathematically very different. In what follows below, we will therefore focus on using GloVe

solely—but we anticipate essentially identical results were a researcher to use one of the Word2Vec

infrastructures.

Both camps released software that allowed researchers to use pre-trained embeddings (fit to a

corpus such as the English entries on Wikipedia) or estimate their own. This latter scenario may

be alternatively expressed as saying that analysts are fitting one of the models ‘locally’ to their

particular corpus. Regardless of the specific implementation, initial comparative studies suggested

word embedding models resoundingly outperform traditional DSMs in a range of tasks (Baroni,

Dinu and Kruszewski, 2014), though these claims have been subsequently moderated.
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3 Embedding Models and Parameter Choices

The application of any statistical model requires choices; embeddings are no exception. For po-

litical scientists downloading code (or indeed downloading pre-fit embeddings), at the very least,

they need to decide:

1. how large a window size they want the model to use.

2. how large an embedding they wish to use to represent their words.

3. whether to fit the embedding models locally, or to use pre-trained embeddings fit to some

other (hopefully related) corpus.

We now discuss the nature of these choices. In addition, we explain some other important fea-

tures of embeddings for researchers: namely, the fact that embeddings demonstrate instability in

practice, and what one might do about this. In general, we note that there is often little guidance

in the literature as to how decisions should be made—and virtually none at all for social science

problems. A final caveat here is that, of course, there are many other parameter choices beyond

the ones we specify in this section; for example, Word2Vec allows one to choose a learning rate

for its backpropogation algorithm, and all models can use documents that have been preprocessed

differently. Using our methods below, users can make decisions over them in the same way. But

we keep our focus on the three above because they seem most central to empirical research.

3.1 Window-size

Window-size determines the number of words, on either side of the focus word to be included

in its context.1 The type of semantic relationship captured by embeddings has been found to

vary with window-size, with larger window sizes (> 2) capturing more topical relations (e.g.

1Context windows can also be asymmetric, in which case window-size refers to the number of words on one side
of the focus word to be included in its context. Asymmetric windows are better able to account for word order which
may be useful for some tasks. Pennington, Socher and Manning (2014) for example find asymmetric windows to
produced embeddings better suited for syntactic tasks. Nevertheless, symmetric windows are the default option for
most use cases.
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Obama - President) and smaller window sizes (< 2) capturing syntactic relations (e.g. dance -

dancing).

For topical relationships, larger windows (usually 5 or above) tend to produce better quality

embeddings although with decreasing returns—a result highlighted by Mikolov et al. (2013) and

which we corroborate below. Intuitively, larger contexts provide more information to discriminate

between different words.2 Take, for example, the following two sentences: cows eat grass

and lions eat meat. A window-size of 1 does not provide enough information to distinguish

between cows and lions (we know they both eat, but we don’t know what) whereas a window-

size of 2 does.

3.2 Embedding Dimensions

This parameter determines the dimensions of the embedding vectors which usually range between

50−450. We can think of these dimensions as capturing different aspects of “meaning” or seman-

tics that can be used to organize words.3 Too few dimensions—imagine the extreme of 1—and

there can be no meaningful separability of words; too many, and some dimensions are likely to

be redundant (go unused). Factors such as vocabulary size and topical specificity of the corpus

are likely to play a role, although theoretical work in this area remains scant.4 Empirically, more

dimensions generally improve performance across a wide variety of tasks but with diminishing

returns. Interestingly, extant literature suggests that the point at which improvements become

marginal differs depending on the problem. For downstream tasks optimal performance can some-

times be reached with as few as 50 dimensions (Melamud et al., 2016). Semantic tasks, on the

other hand, continues show significant improvements until around 200− 300 dimensions after

which improvements are marginal (Pennington, Socher and Manning, 2014).5 This difference is

2See Supporting Information C for a quick empirical verification of this claim for real data.
3Thinking of “meaning” in terms of dimensions in Euclidean space dates back at least to Osgood, 1952.
4Of the few that we could find, Patel and Bhattacharyya (2017) posit that the number of pairwise equidistant words

of the corpus vocabulary measured using the term co-occurrence matrix provides a lower bound on the number of
dimensions. It is not entirely clear what this equidistant metric means substantively.

5Readers may recall, 300 is also the optimal number of dimensions in LSA (Landauer and Dumais, 1997).
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likely a result of downstream tasks leveraging specific aspects of meaning—for example, a sen-

timent classification task will likely benefit from embeddings that focus on discriminating words

along affect-related dimensions.

3.3 Pre-Trained Versus Going Local

Embedding models can be data hungry, meaning they need a lot of data to produce ‘useful’ re-

sults. Consequently, researchers with small corpora often use pre-trained embeddings. This also

avoids the overhead cost associated with estimating and tuning new embeddings for each task.

However, there are trade-offs. Pre-trained embeddings need not capture well the semantics of

domain-specific texts. Intuitively, we want to use embeddings estimated using a corpus generated

by a similar “language model” to that which generated our corpus of interest. The more similar the

two language models, the more the underlying semantics. For a highly specific corpus—a corpus

in Old English for example—it may make sense to train a local model.

Li et al. (2017) compare the performance of embeddings trained on different corpora for Twit-

ter sentiment analysis. They find that embeddings trained on the Google News corpus perform

worse—measured in terms of accuracy—than embeddings trained on Twitter data. This motivates

an argument that twitter data is different. However, those also find that embeddings trained on

Google News and Twitter data perform the best. This suggests more information is better. On

the other hand, Diaz, Mitra and Craswell (2016) find that specialized embeddings—trained on a

relevant subset of documents—outperform global embeddings in information retrieval tasks.6

An alternative to training locally is to “retrofit” global (pre-trained) embeddings to include

additional information. Faruqui et al. (2014) retrofit pre-trained vectors using existing semantic

lexicons such as WordNet, FrameNet, and the Paraphrase Database. They find this additional

information improves performance in the standard lexical evaluation tasks. Retrofitting can also be

task-specific. Kiela, Hill and Clark (2015) retrofit pre-trained embeddings to improve performance

6The superiority of using specialized versus global information has been well established in the information re-
trieval literature Attar and Fraenkel (1977); Xu and Croft (1996); Hull (1994).
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in similarity and relatedness tasks—two different tasks—using an online Thesaurus (MyThes) and

lists of free association norms for each task respectively.7 Similarly, Yu et al. (2017) specialize

word embeddings to perform sentiment analysis by retrofitting pre-trained embeddings using lists

of valence norms. One final alternative is to initialize locally-trained models with pre-trained

embeddings, relaxing data constraints. Again, this only makes sense if the underlying language

models are not too dissimilar.

In this paper we compare the set of embeddings from a set of locally trained models using a

political corpus to one of the more popular pre-trained embeddings available—GloVe. Our results

show high correlations between both models, suggesting pre-trained embeddings may be appro-

priate for certain political corpora. However, we stress that researchers need be conscious and

transparent regarding the implied assumptions when deciding to use pre-trained embeddings.

3.4 Instability

Word embeddings are known to be unstable (Wendlandt, Kummerfeld and Mihalcea, 2018). That

is, the embedding space of two models trained on the same corpus and with the same parameter

choices may differ substantially—a fact we will observe empirically below. This instability can

be particularly problematic when drawing qualitative inferences from the embeddings themselves,

with equivalent models producing widely different nearest neighbor rankings. Underlying this in-

stability are various sources of randomness in the estimation of word embeddings, most notably

random initialization of the embedding vectors and random order of training documents. While all

words are affected, some are more affected than others (Wendlandt, Kummerfeld and Mihalcea,

2018; Pierrejean and Tanguy, 2018). It is worth noting that GloVe has been found to be more stable

than Word2Vec, probably because of its use of a global co-occurrence matrix rather than an on-

line local window context (Mimno and Thompson, 2017; Wendlandt, Kummerfeld and Mihalcea,

7Kiela, Hill and Clark (2015) also evaluate joint-learning models in which embeddings are estimated using both
the corpus and the additional semantic lexicons. They do not find a significant performance difference compared to
retrofitting.

10



2018).8

To account for the inherent instability in the estimation process we recommend researchers es-

timate a given model over multiple initializations of the corpus—we use ten—and use the average

of the metric of the metric of interest. We accept that variation between realized embeddings is

simply a fact of life; nonetheless, for what follows we presume that researchers want to know how

stability correlates with model specification.

4 Evaluating Embedding Models for Social Science

As noted above, researchers face as least three “big” choices when producing word embeddings.

To evaluate which choices are optimal we need evaluation tasks. For word embeddings tasks fall

into one of two categories: extrinsic and intrinsic.9 These correspond to the two main use cases of

embeddings: as feature inputs and as models of semantics. Recall that our focus in this paper is on

the second case.

Extrinsic tasks include various downstream NLP problems such as parts-of-speech tagging,

named-entity-recognition, sentiment analysis and document retrieval. These are usually super-

vised, and have well-defined performance metrics. For this paper we considered evaluating em-

beddings this way. However, it was not immediately obvious to us which tasks, if any, represented

good baselines for political scientists.10 As noted by Denny and Spirling (2018), there has been

very low take up of supervised learning problems in political science relative to unsupervised learn-

ing problems. Moreover, as noted above, evidence of good performance need not generalize. How

much should a researcher in IR update when informed that a given embedding model performs

well in a classification task of congressional speeches? Given a well-defined downstream task, we

8Separate to instability, it is reasonable to expect embeddings to differ as a result of sampling variability. If we
view any given corpus as a particular instantiation of a superpopulation of linguistic entities, then we should adjust for
this with the equivalent of a standard error. See Antoniak and Mimno (2018) for bootstrapping ideas pertaining to this
problem.

9It is worth noting that performance in intrinsic tasks need not translate into good performance in extrinsic tasks
(Chiu, Korhonen and Pyysalo, 2016).

10The lack of consensus extends beyond political science (Nayak, Angeli and Manning, 2016).
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recommend users first consider pre-trained embeddings if reasonably appropriate—unlikely if the

corpus of interest is in Old English—before proceeding to tune a locally trained model.

Intrinsic tasks evaluate embeddings as models of semantics. These include word analogy—

algebraic operations are performed using word vectors to answer questions such as ”France is

to Paris as Germany is to. . . ”; word similarity—pairs of words along with their human provided

similarity ratings are compared to similarity ratings computed using word embeddings; synonym

tests—TOEFL multiple-choice synonym questions; noun-clustering—a similarity measure is used

to assign words to a pre-defined number of semantic classes; sentence completion (specific to the

Skip-Gram architecture)—select from multiple choices to fill in the missing word in a sentence.

These tasks require human generated data. Researchers tend to rely on existing datasets that are

either freely available online or can be requested from the original authors. However, this can be

problematic as existing datasets may be ill-suited to a particular corpus or for a particular seman-

tic relation of interest. For example, word similarity datasets often do not differentiate between

the various ways in which two words can be related (Faruqui et al., 2016).11 Moreover, seman-

tic relationships are likely to vary as a function of demographics (Halpern and Rodriguez, 2018;

Garimella, Banea and Mihalcea, 2017), yet few datasets have information on the background char-

acteristics of the subjects. The role of demographics or other background characteristics, including

partisanship, is of particular relevance to social scientists. Indeed, these differences are precisely

what we are interested in! Below we make the case for crowdsourcing as a flexible alternative

allowing researchers to tailor the tasks to specific objectives and gather demographic information

when appropriate (Benoit et al., 2016; Schnabel et al., 2015).

We compare models using four criteria:

1. technical criteria —model loss and computation time;

2. model variance (stability)—within-model Pearson correlation of nearest neighbor rankings

11Agirre et al. (2009) distinguish between similarity—as in coffee and tea—and relatedness—as in cup and cof-
fee. Words can be related syntactically or semantically (Mikolov et al., 2013; Baroni, Dinu and Kruszewski, 2014).
According to structuralist theory words can have paradigmatic —words that tend to occur in similar contexts— and
syntagmatic —words that tend to co-occur— relations (Saussure, 1959; Sahlgren, 2008).
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across multiple initializations;

3. query search ranking correlation—Pearson and rank correlations of nearest neighbor rank-

ings;

4. human preference— a “Turing test” assessment and rank deviations from human generated

lists

The latter two criteria can also be used to compare pre-trained embeddings with locally-trained

embeddings, which we do. To illustrate this framework, we compare pre-trained embeddings to

a set of locally trained embedding models varying in two parameters: embedding dimensions and

window-size. Before proceeding with our estimation framework we discuss each criteria in greater

depth.

4.1 Technical Criteria

The most straightforward metric to compare different models is prediction loss at the point of

convergence (i.e. when training stops). Specifically we look at both in-sample and out-of-sample

(test-set) loss. For this, we consider window-size a tuning parameter. As noted above, the choice

of window-size may be informed by the type of semantic relation of interest—syntactic or topical.

If a specific window-size is chosen on theoretical grounds—whatever they may be—then it would

no longer be a tuning parameter and it would be unreasonable to compare models of different

window-sizes. Instead we opt to choose window-size as a function of model performance. If the

intuition motivating GloVe is correct, namely that meaning is strongly connected to co-occurrence

ratios, then the window-size that optimizes the correspondence between the embedding vectors

and the global co-occurrence statistics should produce the highest the more “meaningful” embed-

dings. Generally speaking, larger window sizes and more dimensions both translate into longer

computation times, resulting in a performance vs computation time tradeoff. We therefore also

compare the set of locally-trained models with respect to computation time in minutes.
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4.2 Stability

As we discussed above, embedding models are unstable. This is likely to vary for different pa-

rameter choices. To quantify this instability we look at the Pearson correlation of nearest neighbor

rankings across a set of different vector initializations for each combination of parameter choices.

Given ten separately estimated models for a given parameter pair, we have 45 pairwise correlations

for each model (n(n−1)
2 , or the lower diagonal of the 10×10 correlation matrix). We compare the

distribution of these pairwise correlations across models. Below we provide more detail as to how

we arrive at these samples and the overall estimation framework.

4.3 Query Search Ranking Correlation

While prediction loss is informative, it is not obvious how to qualitatively interpret a marginal

decrease in loss. Ultimately, we are interested in how a given embedding model organizes the

semantic space relative to another. To evaluate this, we appeal to the information retrieval literature.

A common objective in information retrieval problems is to rank a set of documents in terms of

their relevance to a given query. In our case we are interested in how two models rank words in a

common vocabulary in terms of their semantic similarity with a given query term. One potential

measure is the intersection over the union (IoU) — also known as the Jaccard Index— between

the set of top N nearest neighbors for a given target word (see, e.g., Sahlgren, 2006; Pierrejean and

Tanguy, 2017). For example, take the following two sets of top 5 nearest neighbors for the target

word democracy: A = { freedom, democratic, ideals, vibrant, symbol} and B = {freedom,

democratic, dictatorship, democratization, socialism}. Given two nearest neighbors in

common, the IoU is |A∩B|
A∪B = 2

8 = 0.25. The problem with using the IoU Index is that it is highly

sensitive to the choice of N and there is no principled way of choosing N. Moreover, the IoU

does not take into account rank order. There may be cases where the IoU is appropriate—when N

is well-defined and order is irrelevant—but for the comparisons below we opt for comparing the

entire ranking—all words in the common vocabulary—for a set of predefined query terms. We do

so using both Pearson correlation and rank correlation. The higher these correlations, the more
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similar the embedding spaces of both models. Below we discuss how we went about choosing the

query terms.

4.4 Human Preferences

The output of distributional models with strong predictive performance need not be semantically

coherent from a human standpoint. This point was illustrated by Chang et al. (2009) in the case

of topic models. For this reason we make a clear distinction between predictive performance and

semantic coherence, and propose separate metrics to evaluate both.

4.4.1 Turing Assessment

To evaluate semantic coherence we draw inspiration from the fundamental principles laid out by

Turing (1950) in his classic article on computer intelligence. In that context, a machine showed

human-like abilities if a person engaging in conversation with both a computer and a human could

not tell which was which. We use that basic intuition in our study. In particular, an embedding

model achieves “human” performance if human judges—crowd workers—cannot distinguish be-

tween the output produced by such a model from that produced by independent human coders. In

our case, the idea is not to “fool” the humans, but rather to have them assert a preference for one

set of outputs over another. If a set of human judges are on average indifferent between the human

responses to a prompt and the model’s responses, we say we have achieved human performance

with the model. By extension, a model can achieve better than human performance by being on

average preferred by coders. Naturally, models may be worse than human if the judges like the

human output better.

Before getting into specifics, it is helpful to clarify some aspects of the intuition. First, there is a

superficial similarity between our approach and more conventional supervised learning problems.

This is misleading. In those arrangements, the researcher employs humans to hand-code a training

set. Then they use a model to learn the relationships between the covariate features of the data and

the class labels given by the humans. After this, the analyst sees how well the machine can predict
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“held out” human labels in a test set. The machine’s performance can then be directly assessed

in terms its ability to replicate the human judgments for each case. But this is not what we are

doing. Instead, we ask whether humans themselves, on seeing a statistical model’s best attempt to

describe a concept, find that representation reasonable relative to one produced by other humans.

Second, while the Turing test connotes a human versus machine contest, the approach here is more

general. Indeed, any output can be compared to any other—including where both sets are produced

by a model or both by humans—and conclusions drawn about their relative performance as judged

by humans.

The steps we take to assess the relative Turing performance of the models are as follows:

1. Human generated nearest neighbors: For each of the ten political prompt words above

have humans—crowd workers on Amazon MTurk—produce a set of nearest ten neighbors—

we have 100 humans perform this task. Subsequently rank “human” nearest neighbors for

each prompt in terms of the number of mentions and choose the top 10 for each prompt.

2. Machine generated nearest neighbors: For the embedding model under consideration—

pre-trained or some variant of the locally fit set up—produce a list of ten nearest neighbors

for each of the ten given prompt words above.12

3. Human rating: Have a separate group of humans perform a Triad task —135 subjects on

average for each model comparison— wherein they are given a prompt word along with two

nearest neighbors —a computer and a human generated nearest neighbor— and are asked to

choose which nearest neighbor they consider better fits the definition of a context word.13

4. Compute metric: For each prompt compute the expected probability of the machine gen-

erated nearest neighbor being selected and divide by 0.5. This index will range between 0

and 2. A value of 1 implies the embedding model is on par with human performance (i.e.

12It is common in the literature to focus on the top ten nearest neighbors. See for example McCarthy and Navigli
(2007) and Garimella, Banea and Mihalcea (2017).

13See Appendix for the exact wording of the task.
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a human rater is equally likely to choose a nearest neighbor generated by the embedding

model as one generate by another human).

In most cases there is some overlap in the set of nearest neighbors being compared. The

comparisons we show subjects never include the same nearest neighbor for both models; in these

cases we assume either model has 50% chance of being selected. This requires we adjust the

expected probability of a machine generated nearest neighbor being selected by the probability of

the triad task showing the same nearest neighbor for both machine and human. For both tasks

above—collecting human generated nearest neighbors and the triad task—we created specialized

RShiny apps that we deployed on MTurk. For the triad task we paid subjects $1 to perform 13 such

comparisons—one for each of our political prompt words, one trial run and two quality checks;

for the word generation task we paid subjects $3 to generate 10 associations for each of the ten

political prompts. The code for both apps is available from our GitHub.

4.4.2 Log Rank Deviations

Using the set of human generated lists we can compare the aggregate human ranking of each near-

est neighbor—as determined by token counts—with their equivalent rank on a given embedding

space. So for example, if for the query democracy the word freedom is ranked 3rd according

to human counts and 7th according to a given embedding space, we say it’s log rank deviation is

log((7− 1)2). We compute this deviation for every token mentioned by our subjects for each of

our politics queries and compute an average over the set of queries for every model.14

5 Estimation Setup

Obviously, we need a data set on which to operate, and a particular way to model the embeddings.

For the latter, as noted above, we choose GloVe simply because it seems more popular with so-

14It may be worth limiting this to tokens mentioned by at least N subjects, but here we avoid making additional
parameter choices.
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cial scientists,15 though we have no reason to believe our results below would differ much under

Word2Vec. For the data we focus on a medium sized corpus of around 1.4 million documents from

American politics—though as we will see our findings are portable to other political contexts and

indeed other languages.

Below we will extend our analysis to other corpora and other languages, but for now we focus

in detail on a collection we deem somewhat representative of political science efforts in this area. In

particular, the set of Congressional Record transcripts for the 102nd–111th Congresses (Gentzkow,

Shapiro and Taddy, 2018). These contain all text spoken on the floor of both chambers of Congress.

We further restrict our corpus to the set of speeches for which party information is available.16

We do minimal preprocessing: remove all non-text characters and lower case. Next we subset the

vocabulary. We follow standard practice which is to include all words with a minimum count above

a given threshold—between 5-10 (we choose 10). This yields a vocabulary of 91,856 words.17

5.1 Implementing Choices

We focus our analysis on two hyperparameter choices and all 25 combinations, though to reiterate

the framework we lay out is not specific to these parameter pairs:

1. window-size—1, 6, 12, 24 and 48 and

2. embedding dimension —50, 100, 200, 300, 450

To account for estimation-related instability we estimate 10 sets of embeddings for each hy-

perparameter pair, each with a different randomly drawn set of initial word vectors. In total we

estimate 250 different sets of embeddings. The only other hyperparameter choices we make and

leave fixed are the number of iterations and convergence threshold. We set the maximum number

of iterations to 100 and a use a convergence threshold of 0.001 such that training stops if either the

15In particular, the GloVe pre-trained available on February 2, 2019 from https://nlp.stanford.edu/
projects/glove/, for which the training corpus is Wikipedia 2014 and Gigaword 5.

16Focusing on this subset reduces our corpus by around a third.
17The pre-trained GloVe vocabulary consists of 400,000 tokens.
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maximum number of iterations is reached or the change in model loss between the current and pre-

ceding iterations is below the convergence threshold. None of our models reached the maximum

number of iterations. We set all remaining hyperparameter values at their default or suggested

values in the Glove software.

5.2 Query Selection

Above we explained that a natural auxiliary quantity of interest is the set of nearest neighbors of a

given word in the embeddings space. These form the core of our comparison metric in the sense

that we will want to know how similar one set of nearest neighbors from one model specification

is to another. And, by extension, how “good” one set of nearest neighbors is relative to another in

terms of a quality evaluation by human judges. We use two sets of queries: a random sample of

100 words from the common vocabulary and a set of 10 curated political terms.18

For the politics-specific queries, we hand-picked 10 terms—prior to performing any evaluations

needless to say. First, there are series of concept words that we suspected would be both easily

understood, but also exhibit multiple different meanings depending on who is asked: democracy,

freedom, equality, justice. Second, there are words pertaining to policy issues that are debated

by political parties and motivate voting: immigration, abortion, welfare, taxes. Finally, we

used the names of the major parties, which we anticipated would produce very different responses

depending on partisan identification: republican, democrat. Obviously, these words are some-

what arbitrary; we could have made other choices. And indeed, we would encourage other re-

searchers to do exactly that. Our prompts are intended to be indicative of what we expect broader

findings to look like, and to demonstrate the utility of our generic approach.

18A more systematic approach would compare the entire vocabulary (see for example Pierrejean and Tanguy
(2017)). We found this prohibitively expensive and ultimately unnecessary. A random sample of 100 words should
approximate well-enough the comparisons of interest.
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6 Results: Performance Compared

This section reports the results for the evaluation metrics outlined in section 4. We begin with the

technical criteria.

6.1 Technical Criteria

Figure 1a displays the mean—over all ten initializations—minimum loss achieved for all six-

teen parameter pairs we considered. Consistent with previous work, more dimensions and larger

window-sizes both unconditionally improve model fit albeit with decreasing returns in both pa-

rameter choices. Except for very small window-sizes (< 6), improvements become marginal af-

ter around 300 dimensions. Unequivocally, researchers ought avoid combining few dimensions

(< 100) with small window-sizes (< 6). Keep in mind, however, that using more dimensions

and/or a larger window-size comes at a cost, longer computation time (see Figure 1b). The largest

of our models (48− 450) took over three hours to compute parallelizing over eight cores.19 This

seems reasonable if only computing once and having access to several cores, but can become

prohibitive when computing over several initializations as we suggest.20 In this light, the popu-

lar parameter setting 6− 300 (window size 6, vector length 300) provides a reasonable balance

between performance and computation time.

6.2 Stability

We next compare all parameter pairs with respect to the stability of the resulting embeddings.

Figures 2a plots the distribution of Pearson correlations for the 100 random queries. Models with

larger window-sizes produce more stable estimates—higher average Pearson correlation and lower

interquartile range—but only up to a point. As the number of dimensions increase, the difference in

stability between different window sizes decreases and eventually flips—larger window sizes result

19At the time of writing, a standard laptop has 4 cores available. Keep in mind computation time will be a function of
the stopping conditions specified—number of iterations and convergence threshold. 100 iterations and a convergence
threshold of 0.001 may be considered too conservative.

20Unless the researcher has access to a high-performance cluster (as we did) and is able to parallelize.
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(a) Mean Minimum Loss Achieved

(b) Computation Time (minutes)

Figure 1: Technical Criteria
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(a) Random Queries (b) Politics Queries

Figure 2: Stability Criteria

in greater instability. This parabolic relationship between window-size, number of dimensions and

stability is likely a function of corpus size and token frequency.21 For the set of 10 politics queries

we observe the same trends although do not reach the point at which the relationship reverses (see

Figure 2b).

6.3 Query Search Ranking Correlation

Clearly different parameter choices produce different results in terms of performance and stability,

but what do these differences mean substantively? To answer this question we turn to comparing

models with respect to how they rank query searches. Figure 3a displays a heatmap of pair-

wise correlations for all models, including GloVe pre-trained embeddings, for the set of random

queries.22 We observe high positive correlations (> 0.5) between all local models. Correlations

are generally higher between models of the same window-size, an intuitive result, as they share

the underlying co-occurrence statistics. Somewhat less intuitive, comparing models with different

window-sizes, correlations are higher the larger the window-size of the models being compared

(e.g. 6 and 48 vis-a-vis 1 and 6). Correlations are larger across the board for the set of political

21For the State of the Union, a much smaller corpus below, we find the flip occurs after 100 dimensions.
22As pretrained embeddings we use the 6-300 GloVe embeddings.
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queries (see Figure 3b). These results suggest the organization of the embedding space is most

sensitive to window-size but this decreases quickly as we go beyond very small window-sizes (i.e.

models with window-size of 6 and 48 show much higher correlation than models with window-size

of 1 and 6).

The last column of Figures 3a and 3b compare GloVe pre-trained embeddings with the set of

local models. For this comparison we subsetted the respective vocabularies to only include terms

common to both the local models and the pretrained embeddings.23 As would be expected, correla-

tions are lower than those between local models, yet they are still surprisingly large—especially for

local models with larger window-sizes and for the set of political queries (all above 0.5). Our read-

ing is that GloVe pre-trained embeddings, even without any modifications (Khodak et al., 2018),

may be a suitable alternative to estimating locally trained embeddings on present-day political cor-

pora. This is good news for political scientists who have already relied on pre-trained embeddings

in their work.

As a final check, we looked at whether pre-trained embeddings might do a ‘worse’ job of re-

flecting highly specific local embeddings for our focus corpus. In this case, we mean party: it

could in principle be the case that while pre-trained embeddings do well in aggregate for the Con-

gressional Record they do poorly for Democrats or Republicans specifically. To evaluate this we

estimate a set of additional local models (again, 10 for each group and using 6-300 as parame-

ter settings) for subsets—by party—of the aggregate corpus. We find no statistically significant

differences in correlations for the politics queries (see Supporting Information D).

6.4 Human Preferences

Recall that human raters represent our gold-standard evaluation metric, and we assess performance

here on two different types of tasks.

23In the appendix we include additional comparisons without subsetting the vocabularies.
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(a) Random Queries

(b) Politics Queries

Figure 3: Query Search Ranking Criteria
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6.5 Turing Assessment

Figures 4a– 4d measure performance of a “candidate” model relative to a “baseline” model. Re-

call, values above (below) 1 mean nearest neighbors from the “candidate” model were more (less)

likely to be chosen by human raters. A value of 1 means human raters were on average indifferent

between the two models. Figure 4a compares two local models: 48−300 (candidate) and 6−300

(baseline). There is no unqualified winner. We see this as consistent with previous metrics—these

models have a 0.92 correlation (see Figure 3b).

How do local models fare against human generated nearest neighbors? Except for one query

(immigration), the local model of choice—6-300—shows below-human performance for all but

two of the queries. On average, for the set of ten political queries, the local model achieves 69% (std

devn= 0.20) of human performance. Turning to pre-trained GloVe embeddings, we observe that

they are generally preferred to locally trained embeddings (see Figure 4c). Moreover, pre-trained

embeddings are more competitive against humans—albeit with greater variance—achieving an

average of 86% (std dev = 0.23) of human performance.

25



(a) Candidate: Local 48-300

Baseline: Local 6-300

(b) Candidate: Local 6-300

Baseline: Human

(c) Candidate: GloVe

Baseline: Local 6-300

(d) Candidate: GloVe

Baseline: Human

Figure 4: Human Preferences-Turing Assessment

6.6 Log Rank Deviations

Using the log rank deviation measure, we can compare all models given our set of human generated

lists (see Figure 5). Results generally mirror those obtained using our technical loss criterium,

barring the large confidence intervals. Models with larger windows and more dimensions show

lower log rank deviations, indicating better performance but with decreasing returns. This suggests
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a strong correspondence between predictive performance and semantic coherence as hypothesized

by the distributional hypothesis.

Figure 5: Human Preferences-Log Rank Deviations

7 Other Corpora, Other Languages

Our core results presented, we now extend our evaluation to four other corpora, varying in size and

language. These are:

1. the full set of speeches from the UK Parliament for the period 1935− 2016 obtained from

Rheault et al. (2016)

2. all State of the Union (SOTU) speeches between 1790 and 2018

3. the full set of speeches from both chambers of the Spanish Legislature —Cortes Gen-

erales— for the V - XII legislatures.24 As political queries we use: democracia, libertad,

igualdad, equidad, justicia, inmigracion, aborto, impuestos, monarquia, parlamento.
24As the XII was ongoing at the time of writing we used all speeches available up until Oct-18.
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4. the full set of speeches from the German Legislature—Deutscher Bundestag— for the elec-

tion periods 14 - 19.25 The political queries in this case are: demokratie, freiheit,

gleichberechtigung, gerechtigkeit, einwanderung, abtreibung, steuern, cdu and

spd.

We did not find readily available pre-trained embeddings in German, as such all our comparisons

in this case are between locally trained embeddings. Both the Spanish and German corpora are

original datasets collected for the purposes of this paper.26

Table 1 provides summary statistics for these corpora and the Congressional Record corpus.

We can see that the SOTU corpus is substantially smaller than all the other corpora and also en-

compasses a much longer time period.

Corpus Period Num. of Docs. Num. of Tokens Avg. Tokens/Doc. Vocab. Size
Congressional Record 1991 - 2011 1,411,740 3.4 ×108 238 91,856
Parliamentary Speeches 1935 - 2013 4,455,924 7.2 ×108 162 79,197
State of the Union 1790 - 2018 239 2.0 ×106 8143 11,126
Spanish Legislature 1993 - 2018 1,320,525 3.0 ×108 224 94,970
German Legislature 1998 - 2018 1,193,248 0.8 ×108 69 108,781

Table 1: Corpora Summary Statistics

In Supporting Information E, we provide the same results plots as we gave for our Congres-

sional Record. Perhaps surprisingly, but no doubt reassuringly, these are almost identical to the

ones above. That is, when we look at the embedding models we fit to these very different corpora,

the lessons we learn in terms of hyperparameter choices, stability and correlations across search

queries (i.e. on the issue of whether to fit local embeddings, or to use prefit ones) are the same

as before. Of course, there are some exceptions: for example, we do find models of window-size

equal to one perform well in the case of the SOTU corpus and for the German corpus—though to

a lesser extent.
25As the 19th Wahlperiode was ongoing at the time of writing we used all speeches available up until Oct-18.
26We have made these publicly available, and these may be downloaded via the project’s github page.
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8 Advice to Practitioners

In this section we summarize our results in terms of what we deem the main takeaways for practi-

tioners looking to use word embeddings in their research. First, in terms of ‘choice’ parameters in

applied work:

• Window-size and embedding dimensions: with the possible exception of small corpora

like the State of the Union speeches, one should avoid using very few dimensions (below

100) and small window-sizes (< 5), especially if interested in capturing topical semantics.

While performance improves with larger window-sizes and more dimensions, both exhibit

decreasing returns—improvements are marginal beyond 300 dimensions and window-size of

6. Given the tradeoff between more dimension/larger window-size and computation time, the

popular choice of 6 (window-size) and 300 (dimensions) seems reasonable. This particular

specification is also fairly stable meaning one need not estimate multiple runs to account for

possible instability.

• Pre-trained vs local embeddings: GloVe pre-trained embeddings generally exhibit high

correlations (> 0.4 for the set of random queries and > 0.65 for the set of curated queries)

with embeddings trained on our selection of political corpora.27 At least for our focus Con-

gressional Record corpus, there is little evidence that using pre-trained embeddings is prob-

lematic for subdivisions of the corpus by party—Republican vs Democrat speech.

Human coders generally prefer pre-trained representations, but not for every term, and it

is quite close for many prompts. Specifically, GloVe pre-trained word embeddings achieve

on average—for the set of political queries—80% of human performance and are generally

preferred to locally trained embeddings.

These results suggest embeddings estimated on large online corpora (e.g. Wikipedia and

Google data dumps) can reasonably be used for the analysis of contemporaneous political

27This is lower in the case of small corpora like the State of the Union, and in the case of random queries for the
Spanish corpus.
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texts.

Further, if one does wish to train locally, the computational overheads are (not especially)

severe, at least for a medium size corpus, so this is probably not a reason per se to use

pre-trained embeddings.

Second, in terms of methodology lessons on how to evaluate models:

• Query search: in the absence of a clearly defined evaluation metric—a downstream task

with labeled data—embeddings can be compared in terms of how they “organize” the em-

bedding space. We propose doing so using query search ranking correlations for a set of

randomly selected queries and—given a specific domain of interest— a set of representative

domain-specific queries. To discriminate between models resulting in very different embed-

ding spaces, both can be compared to a baseline, either a model known to perform well or,

as we do, a human baseline.

• Crowdsourcing: Crowdsourcing provides a relatively cheap alternative to evaluate how well

word embedding models capture human semantics. We had success with a triad task format,

a choice-task with an established track-record and solid theoretical grounding in psychology.

• Human “Turing” test: a given embeddings model—or any model of human semantics for

that matter—can be said to approximate human semantics well if, on average, for any given

cue, the model generates associations (nearest neighbors) that a human cannot systematically

distinguish from human generated associations.

Specifically, we define human performance as the point at which a human rater is indifferent

between a computer and a human generated association.

Third, in terms of ‘instability’

• Stability: word embeddings methods have a lot of moving parts many of which introduce

an element of randomness into the estimation. This produces additional variability beyond

sampling error which, if unaccounted for, can lead to mistaken and non-replicable inferences.
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To account for estimation-related instability we endorse estimating the same model several

times, each with different randomly drawn initial word vectors and use an average of the

distance metric of choice.28 The good news, from our results at least, is that embeddings

that perform well on the technical and human metrics tend to also be the most stable. Finally

as an aside, the embeddings themselves should not be averaged as they lie in different spaces.

9 Discussion

Word embeddings in their modern scalable form have captured the attention of academia and in-

dustry, with the foundational papers in this area accumulating tens of thousands of citations since

publication just five or six years ago. Early indications are that their influence will soon be felt

in social science, especially in the study of politics. As always, more methodological options are

better, but it is important that we understand what they can do for us and what they cannot.

Here, we focused on “optimal” specifications, for which we used multiple criteria both tech-

nical and substantive on what we deem to be a representative corpus—The Congressional Record.

This included a new “Turing”-style test, which pits models (including cheap, pre-trained ones)

against humans, to discover what (other) humans prefer. For the domain of political science, we

have good news: by all the criteria we used, off-the-shelf pre-trained embeddings work very well

relative to—and sometimes better than—both human coders, and more involved locally trained

models. Furthermore, locally-trained embeddings perform similarly—with noted exceptions—

across specifications which should reduce end-user angst about their parameter choices. The gen-

eral form of these findings extend to historical and non-English texts.

Our efforts here has been concerned with a broad but necessarily limited number of possible

options. Of course, other researchers will care about different substantive concepts and technical

specifications. Irrespective of those particularities, however, our work-flow here will be useful.

Finally, of course, we have focused on relative performance: we have not studied whether embed-

28Note, all packages initialize word vectors randomly so this simply amounts to estimating the same model several
times.
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dings are interesting or useful per se for understanding behavior, events and so on. We leave such

questions for future work.
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Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel

Kuksa. 2011. “Natural language processing (almost) from scratch.” Journal of Machine Learn-

ing Research 12(Aug):2493–2537.

Denny, Matthew J and Arthur Spirling. 2018. “Text preprocessing for unsupervised learning: why

it matters, when it misleads, and what to do about it.” Political Analysis 26(2):168–189.

Diaz, Fernando, Bhaskar Mitra and Nick Craswell. 2016. “Query expansion with locally-trained

word embeddings.” arXiv preprint arXiv:1605.07891 .

Faruqui, Manaal, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy and Noah A Smith.

2014. “Retrofitting word vectors to semantic lexicons.” arXiv preprint arXiv:1411.4166 .

Faruqui, Manaal, Yulia Tsvetkov, Pushpendre Rastogi and Chris Dyer. 2016. “Problems with

evaluation of word embeddings using word similarity tasks.” arXiv preprint arXiv:1605.02276 .

Firth, John Rupert. 1957. Studies in linguistic analysis. Wiley-Blackwell.

Garimella, Aparna, Carmen Banea and Rada Mihalcea. 2017. Demographic-aware word asso-

ciations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing. pp. 2285–2295.

34



Gentzkow, Matthew, J.M. Shapiro and Matt Taddy. 2018. “Congressional Record for the 43rd-

114th Congresses: Parsed Speeches and Phrase Counts.”.

URL: https://data.stanford.edu/congress text

Halpern, David and Pedro Rodriguez. 2018. Partisan representations: Partisan differences in se-

mantic representations and their role in attitude judgments. In Proceedings of the 40th Annual

Conference of the Cognitive Science Society. pp. 445–450.

Harris, Zellig S. 1954. “Distributional structure.” Word 10(2-3):146–162.

Harris, Zellig S. 1970. Distributional structure. In Papers in structural and transformational lin-

guistics. Springer pp. 775–794.

Hull, David. 1994. Improving text retrieval for the routing problem using latent semantic indexing.

In SIGIR’94. Springer pp. 282–291.

Khodak, Mikhail, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon Stewart and Sanjeev Arora.

2018. “A la carte embedding: Cheap but effective induction of semantic feature vectors.” arXiv

preprint arXiv:1805.05388 .

Kiela, Douwe, Felix Hill and Stephen Clark. 2015. Specializing word embeddings for similarity or

relatedness. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing. pp. 2044–2048.

Landauer, Thomas K and Susan T Dumais. 1997. “A solution to Plato’s problem: The latent

semantic analysis theory of acquisition, induction, and representation of knowledge.” Psycho-

logical review 104(2):211.

Levy, Omer, Yoav Goldberg and Ido Dagan. 2015. “Improving distributional similarity with

lessons learned from word embeddings.” Transactions of the Association for Computational

Linguistics 3:211–225.

35



Li, Quanzhi, Sameena Shah, Xiaomo Liu and Armineh Nourbakhsh. 2017. “Data Sets: Word

Embeddings Learned from Tweets and General Data.” arXiv preprint arXiv:1708.03994 .

Lund, Kevin and Curt Burgess. 1996. Hyperspace analogue to language (HAL): A general model

semantic representation. In Brain and Cognition. Vol. 30 ACADEMIC PRESS INC JNL-COMP

SUBSCRIPTIONS 525 B ST, STE 1900, SAN DIEGO, CA . . . pp. 5–5.

McCarthy, Diana and Roberto Navigli. 2007. Semeval-2007 task 10: English lexical substitution

task. In Proceedings of the 4th International Workshop on Semantic Evaluations. Association

for Computational Linguistics pp. 48–53.

Melamud, Oren, David McClosky, Siddharth Patwardhan and Mohit Bansal. 2016. “The

role of context types and dimensionality in learning word embeddings.” arXiv preprint

arXiv:1601.00893 .

Mikolov, Tomas, Kai Chen, Greg Corrado and Jeffrey Dean. 2013. “Efficient estimation of word

representations in vector space.” arXiv preprint arXiv:1301.3781 .

Mimno, David and Laure Thompson. 2017. The strange geometry of skip-gram with negative

sampling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing. pp. 2873–2878.

Nayak, Neha, Gabor Angeli and Christopher D Manning. 2016. Evaluating word embeddings

using a representative suite of practical tasks. In Proceedings of the 1st Workshop on Evaluating

Vector-Space Representations for NLP. pp. 19–23.

Osgood, Charles E. 1952. “The nature and measurement of meaning.” Psychological bulletin

49(3):197.

Patel, Kevin and Pushpak Bhattacharyya. 2017. Towards Lower Bounds on Number of Dimensions

for Word Embeddings. In Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 2: Short Papers). Vol. 2 pp. 31–36.

36



Pennington, Jeffrey, Richard Socher and Christopher Manning. 2014. Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP). pp. 1532–1543.

Pierrejean, Bénédicte and Ludovic Tanguy. 2017. Towards Qualitative Word Embeddings Eval-

uation: Measuring Neighbors Variation. In Conference of the North American Chapter of the

Association for Computational Linguistics: Student Research Workshop. pp. 32–39.

Pierrejean, Bénédicte and Ludovic Tanguy. 2018. Predicting word embeddings variability. In The

seventh Joint Conference on Lexical and Computational Semantics. pp. 154–159.

Quinn, Kevin M, Burt L Monroe, Michael Colaresi, Michael H Crespin and Dragomir R Radev.

2010. “How to analyze political attention with minimal assumptions and costs.” American Jour-

nal of Political Science 54(1):209–228.

Rheault, L, Beelen K, Cochrane C and Hirst G. 2016. “Measuring Emotion in Parliamentary

Debates with Automated Textual Analysis.” PLOS ONE 11(12).

Roberts, Margaret E, Brandon M Stewart, Dustin Tingley, Christopher Lucas, Jetson Leder-Luis,

Shana Kushner Gadarian, Bethany Albertson and David G Rand. 2014. “Structural topic models

for open-ended survey responses.” American Journal of Political Science 58(4):1064–1082.

Sahlgren, Magnus. 2006. The Word-Space Model: Using distributional analysis to represent syn-

tagmatic and paradigmatic relations between words in high-dimensional vector spaces PhD the-

sis.

Sahlgren, Magnus. 2008. “The distributional hypothesis.” Italian Journal of Disability Studies

20:33–53.

Saussure, F de. 1959. “Course in general linguistics (W. Baskin, Trans.).” New York: Philosophical

Library .

37



Schnabel, Tobias, Igor Labutov, David Mimno and Thorsten Joachims. 2015. Evaluation meth-

ods for unsupervised word embeddings. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. pp. 298–307.

Turing, Alan. 1950. “Computing machinery and intelligence.” Mind 59(236):433.

Wendlandt, Laura, Jonathan K Kummerfeld and Rada Mihalcea. 2018. “Factors Influencing the

Surprising Instability of Word Embeddings.” arXiv preprint arXiv:1804.09692 .

Wittgenstein, Ludwig. 1953. “Philosophical investigations.” London, Basic Blackw .

Xu, Jinxi and W Bruce Croft. 1996. Query expansion using local and global document analy-

sis. In Proceedings of the 19th annual international ACM SIGIR conference on Research and

development in information retrieval. ACM pp. 4–11.

Yu, Liang-Chih, Jin Wang, K Robert Lai and Xuejie Zhang. 2017. Refining word embeddings for

sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing. pp. 534–539.

38



Supporting Information

A Task Wording

(a) Context Words

(b) Task Instructions

Figure 6: Instructions
39



(a) Random Queries (b) Politics Queries

Figure 7: Jaccard Index Between Pre-Trained and Local Models

B Jaccard Index

To further evaluate the correspondence between pre-trained embeddings and local models we use

the average Jaccard-index —also known as the intersection over the union (IoU)—over the set of

random and politics queries (Sahlgren, 2006; Pierrejean and Tanguy, 2017). The Jaccard-index

between two models for a given query corresponds to the number of common nearest neighbors

in the top N (the intersect of the two sets), over the union of the two sets. For example, take

the following two sets of top 5 nearest neighbors for the query word democracy: A = {freedom,

democratic, ideals, vibrant, symbol} and B= {freedom, democratic, dictatorship, democratization,

socialism}. Given two nearest neighbors in common, the IoU is |A∩B|
A∪B = 2

8 = 0.25. Figure 7 plots

the Jaccard-index, for various values of N, between GloVe pre-trained embeddings and several

local models varying by window size. Unlike with the Pearson correlations we do not subset the

respective vocabularies. As with the Pearson correlations, we observe larger values as window-size

increases but with decreasing returns.

C Window Size and Discrimination for a real corpus

The claim is that larger windows mean that we can better discriminate between term meanings.

We looked at the evidence for this on our Congressional Record corpus. To assess the claim we
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first set up a set of ‘true negatives’—words that should be (fairly) unrelated. In particular for us,

these are just random pairs of words from our corpus. We also evaluated how the average distance

varies for ‘true positives’, that is words that are in fact the same. To assess this we sampled 100

words from the vocabulary. Suppose congress is one of those 100 words. We then. . .

1. tag half of the appearances (randomly selected) of congress in the corpus as congress tp.

So, if congress appears 10,000 times, in our transformed corpus it will appear as congress

5000 times, and congress tp 5000 times.

2. estimate a set of embeddings with the vocabulary including both congress and congress tp.

Now we have an embedding for congress and congress tp. These should be close in embed-

ding space, since they are the same word albeit (randomly) half the incidences have been given a

different token (hence we call them “true positives”). We interpret how close they are as measure

of performance.

In Figure 8a we plot the mean difference in similarity terms between the true positives and the

true negatives. When this number is large, we are saying similar words look much more similar to

one another than random words (i.e. our model is performing well). When this number is smaller,

the model is telling us it cannot distinguish between words that are genuinely similar and words

that are not. On the left of the figure, fixing the embedding dimensions at 300, we see that larger

windows translate to bigger differences—i.e. the model performs better in terms of discrimination.

We call this meaningful separability. 29 As an aside, on the right of the figure, we see that for

a fixed window-size of 6, increasing the number of dimensions actually causes the model to do

worse.
29Keep in mind, removing words from a corpus prior to processing into input-target pairs effectively enlarges the

window-size (Levy, Goldberg and Dagan, 2015). This need only really be of concern when interested in syntactic
relationships which requires smaller windows.
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(a) Varying Window-Size (dimensions = 300) (b) Varying Dimensions (window-size = 6)

Figure 8: Mean Difference in Cosine Similarity True Positives vs. True Negatives

D Pre-trained embeddings perform equally across subgroups

for Congressional Record

Above we showed that overall GloVe pre-trained embeddings correlate highly with locally trained

embeddings. Next we ask whether these correlations differ by party. Such biases can be prob-

lematic if pre-trained embeddings are subsequently used to analyze texts and draw conclusions

on the basis of party. To evaluate whether pre-trained embeddings exhibit bias we compare query

search results based on pre-trained embeddings to results based on locally trained embeddings spe-

cific to each group (Democrat and Republican legislators). We say pre-trained embeddings exhibit

bias—according to this metric—if query search results correlate significantly higher with the query

search results of one group relative to other.

This evaluation requires we estimate separate embeddings for each of these groups. To do

so, we split the congressional corpus by party (Republican vs Democrat). We apply the same

estimation framework as laid out in section 4 to each sub-corpora except we fix window-size and

embedding dimension at 6 and 300 respectively.

Figures 9a and 9b display the main results of our evaluation for a random set of queries and

our set of politics queries respectively. For neither set of queries do we find evidence of partisan
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(a) Random Queries (b) Politics Queries

Figure 9: Pearson correlation of group embeddings with pre-trained GloVe embeddings.

bias—as defined here—in pre-trained embeddings.

E Other Corpora, Other Languages: Results

E.1 Technical Criteria

E.2 Stability

(a) Random Queries (b) Politics Queries

Figure 14: Stability Criteria: Parliamentary Speeches
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(a) Mean Minimum Loss Achieved

(b) Computation Time (minutes)

Figure 10: Technical Criteria: Parliamentary Speeches

(a) Random Queries (b) Politics Queries

Figure 15: Stability Criteria: State of the Union Speeches
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(a) Mean Minimum Loss Achieved

(b) Computation Time (minutes)

Figure 11: Technical Criteria: State of the Union Speeches

(a) Random Queries (b) Politics Queries

Figure 16: Stability Criteria: Spanish Corpus
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(a) Mean Minimum Loss Achieved

(b) Computation Time (minutes)

Figure 12: Technical Criteria: Spanish Corpus

(a) Random Queries (b) Politics Queries

Figure 17: Stability Criteria: German Corpus
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(a) Mean Minimum Loss Achieved

(b) Computation Time (minutes)

Figure 13: Technical Criteria: German Corpus
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E.3 Query Search Ranking Correlation

(a) Random Queries (b) Politics Queries

Figure 18: Query Search Ranking Criteria: Parliamentary Speeches

(a) Random Queries (b) Politics Queries

Figure 19: Query Search Ranking Criteria: State of the Union Speeches
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(a) Random Queries (b) Politics Queries

Figure 20: Query Search Ranking Criteria: Spanish Legislature
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(a) Random Queries

(b) Politics Queries

Figure 21: Query Search Ranking Criteria: German Legislature
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E.4 Human Validation

(a) Parliamentary Speeches (b) State of the Union Speeches

Figure 22: Human Preferences-Log Rank Deviations
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